The Upcoming Concurrency
TS Version 2 for Low-Latency
and Lockless Synchronization

MAGED MICHAEL, MICHAEL WONG &
PAUL MCKENNEY

Cppcon 20
The C++ Conference 2]

ANA

October 24-29

Agenda

1.Don’t we already have a Concurrency TS?

® Why do we need a new one?
* implementation status

2.TS2 Hazard Pointer
 how | learn to love C++ tricks m
3.752 RCU S
* From C to C++ in 2500 days B _
AGE

Concurrency TS1: Don’t we already have a TS?

* Produced in 2015
* Produced by the Concurrency Study Group (SG1) with input from

LEWG, LWG
* Separate document and is not part of ISO C++ Standard

* Goal: Eventual Inclusion into ISO C++ Standard
* Available online: http://wg21.link/n4538
e github : https://github.com/cplusplus/concurrency-ts

4 © 2021.

What was in Concurrency TS17?

* Improvements to std::future

* Latches and Barriers
* Atomic smart pointers

Join Example (Homogeneous)

vector<future<int>> futures;
future<vector<future<int>>> ready =
when_all(futures.begin(), futures.end());

ready.then([] (future<vector<future<int>>> result) {
vector<future<int>> v = result.get(); &
for(auto& f : v) { LT
assert(f.is_ready(Q)); SRR LAKS‘ ERG
}

15

Concurrency TS
Editor's Report

www.CppCon.org

Since Concurrency TS1?

* Improvements to std::future: some

| atches and Barriers;
. Atomic§

Talking about HP and RCU since 2014

1.Erwin Schrodinger’s Zoo and Werner Heisenberg’s advice

2.Increase uncertainty to get performance and scalability

3.50 Procrastinate away! Use Structured Deferral

4 .Shared_ptr vs atomic_shared_ptr vs hazard pointers vs Read
Copy Update (RCU)

5.Hazard Pointers e}

6.Read Copy Update & ™
[

Since 2014, slow as we need to do C++17, 20

But also we need to learn how to convert from C to C++ interface
learn new and interesting C++ idioms

learn new Library conventions

work with tight schedule CPPCOn L2016
grow older, kids graduate .
changed jobs, company ‘ ‘

MICHAEL WONCG

® codeplay
A Concurrency Toolkit

To TS ornotto TS: that is
the question

Whether 'tis nobler in the mind to suffer.
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles.
And by opposing end them.

e Use TSs for library components.
e Don’t use TSs for a language feature unless the feature is a
mostly self-contained unit.
e Don'tuse a TS simply to delay; it doesn’t simplify later
decision making. Have a concrete and articulated crlterla for
i completion. "

WG 21 Direction Group

TS vs IS: question TS should answer

Is there an implementation?

Is it a Library or Language proposal, or involve
both aspects?

Is the proposal a foundational proposal,
meaning many other C++ aspects/proposal
depend on it, and/or it depends on many other
C++ aspects/proposals?

Is it independent of aspects of the language.
Are there competing design proposals?

Is the proposal complicated or large that you
fear there will be error in design decision

Is it a research idea?

Is there substantial invention?

Can it be staged?

Is there a subpart that deserves to be in IS

Is the wording complicated or unconventional

Will the proposal benefit from early integration
(can be applied to a WP)

Will you get feedback/testing only after TS
publication or IS publication

|s there a motivation to slow down a proposal?
Explicitly state the acceptance criteria for the
TS into IS

Are you juggling a large number of related or
dependent proposals (other proposals that
depend on this proposal)?

Are you aiming for user feedback?

Are you aiming for implementation feedback?
|s there a scheduling concern to make C++xx
for it or its dependents?

Proposal for DG advisory

WGs SGs decide on TS or IS route and write proposal supporting direction

The key question:

o WHAT ARE we hoping to LEARN through a TS must be clearly specified.
o WHAT ARE the exit criteria of the TS to IS must be clearly specified.

Other questions should be asked will follow to support your conclusion.

The previous page are questions the DG may ask. And you should think about.
We urge SGs to explicitly poll for this and their supporting reasons

DG will offer non-binding advisory in some cases as

o whether TS or IS route is preferred, or have you considered an SG
o Insome cases an SG vs TS vs IS continuum needs to be considered

Please weigh our opinion as part of your decision process
direction@lists.isocpp.orqg.

What is in Concurrency TS2?

« Several synchronization primitives for locked-free programming on concurrent data

structures. These are cell, hazard ptr and RCU. These extend the existing shared_ptr
and the proposed atomic_shared_ptr which all have safe reclamation facilities. As such
we also propose moving shared ptr and atomic<shared<ptr>> to this new location. We
suspect this part may be controversial, so would ask for discussion on this topic.

* P1121R3. Hazard Pointers: Proposed Interface
and Wording for Concurrency TS 2.

* P1122R4 - Proposed Wording for Concurrent
Data Structures: Read-Copy-Update (RCU)

Concurrency TS2 in future

Concurrency TS2 is an ongoing WIP but might contain the following which has been
making its way through WG21/SG1:

e Data structures such as Concurrent queues, counters,

e Asymmetric fences

e \What about executors?

Plan to be in cpluplus github

o https://qithub.com/cplusplus/concurrency-ts2

Become an IS
e Will it still look like the TS?

14

Future C++ Std new clause 33

. 33: Concurrency Utilities Library
o 33.1 General Concepts

m 33.1.1 Thread Support
m 33.1.2 Executor Support

e 33.2 Safe Reclamation
o 33.2.1 Hazard Pointers
o 33.2.2 RCU
o 33.2.3 Latest/Snapshot?
o 33.2.4 Asymmetric fences

To learn or not to learn?

nat did we learn?

nat were the exit criteria?

nat is the exit vehicle?

o Will it still look like the TS in the IS (exit vehicle)?
What is there still to learn?

* When will we stop learning?
What is implementation status?

* Did the TS process work for us?

===

Hazard Pointers in
Concurrency TS2, C++26, and beyond

Hazard Pointers in a Nutshell

Used to protect access to objects that may be concurrently removed.
A hazard pointer is a single-writer multi-reader pointer.

If a hazard pointer points to an object
before its removal,
then the object will not be reclaimed
as long as the hazard pointer remains unchanged

Protect object A Remove and reclaim object A
(®) Set a hazard pointer to point to A Remove A
4 <) if Ais not removed if no hazard pointers point to A
then it is safe to use A then it is safe to reclaim A
Features:

e Fast and scalable protection
» Supports arbitrarily long protection

Hazard Pointers TS2 Interface

Components:

 Hazard pointers

 Objects protectable by hazard pointers

 Domain(s) to manage hazard pointers and retired objects

Hazard Pointers TS2 Interface

class hazard pointer domain ({
public:
hazard pointer domain () noexcept;
explicit hazard pointer domain (
pmr: :polymorphic allocator<byte> poly alloc) noexcept;
hazard pointer domain(const hazard pointer domainé&) = delete;
hazard pointer domainé& operator=(const hazard pointer domainé&) = delete;
~hazard pointer domain() ;

b g

hazard pointer domainé& hazard pointer default domain () noexcept;

// For synchronous reclamation
vold hazard pointer clean up (
hazard pointer domain& domaln = hazard pointer default domain()) noexcept;

Hazard Pointers TS2 Interface

template <typename T, typename D = default delete<T>>
class hazard pointer obj base ({
public:
void retire (
D d=D(),
hazard pointer domain& domaln = hazard pointer default domain()) noexcept;
volid retire (hazard pointer domain& domain) noexcept;

b g

Hazard Pointers TS2 Interface

class hazard pointer {

public:
hazard pointer () noexcept; // Empty
hazard pointer (hazard pointer&&) noexcept;

hazard pointeré& operator=(hazard pointeré&&) noexcept;
~hazard pointer () ;

[[nodiscard]] bool empty () const noexcept;

template <typename T> T* protect (const atomic<T*>& src) noexcept;

template <typename T> bool try protect (T*& ptr, const atomic<T*>& src) noexcept;
template <typename T> void reset protection(const T* ptr) noexcept;

vold reset protection(nullptr t = nullptr) noexcept;

volid swap (hazard pointeré&) noexcept;

b g

hazard pointer make hazard pointer (
hazard pointer domainé& domain = hazard pointer default domain());

void swap (hazard pointeré&, hazard pointeré&) noexcept;

Usage Example

class Foo : public hazard pointer obj base<Foo> { /* Foo members */ };

void read and use(const std::atomic<Foo*>& src, Func fn) { // Called frequently
hazard pointer h = make hazard pointer();
Foo* ptr = h.protect(src);
fn(ptr); // ptr is protected

}

void update(std::atomic<Foo*>& src, Foo* newptr) { // Called infrequently
Foo* oldptr = src.exchange (newptr)
oldptr->retire() ;

}

What Did We Learn in 4 Years?

* Open source: github.com/facebook/folly under synchronization/Hazptr.h

e Synchronous reclamation:
e TS2 global cleanup is a powerful but blunt tool.

* Folly (fast and scalable) cohort synchronous reclamation.
e CPPCON 2021: Hazard pointer synchronous reclamation beyond Concurrency TS2

* Integrated link counting:

* Not in TS2. Folly support for linked structures with immutable links (e.g., queues).
Can reclaim nodes of arbitrary depth in one check of hazard pointers.

* Hazard pointers arrays optimizations
* Notin TS2. Folly make_hazard_pointer_arrray<M>(), e.g., 4, 5,6 nsvs 4, 8, 12 ns

* Optional dedicated thread pool for asynchronous reclamation:
* Robustness against latency spikes and deadlock.

e Domains:

* Robust default domain with expanded capabilities (cohorts, link counting, array optimization).
* No customization needed in Folly so far.

Hazard Pointers Proposal for C++26

Minimalist useful subset of TS2:

Supports asynchronous reclamation

Compatible with external link counting and automatic retirement
Strict subset of TS2 API and wording

No custom domains (for now)

No synchronous reclamation (for now)

Can be extended

Hazard Pointers Proposal for C++26

class hazard pointer domain ({
public:
hazard pointer domain () noexcept;
explicit hazard pointer domain (
pmr: :polymorphic allocator<byte> poly alloc) noexcept;
hazard pointer domain(const hazard pointer domainé&) = delete;
hazard pointer domainé& operator=(const hazard pointer domainé&) = delete;
~hazard pointer domain () ;

Y

hazard pointer domain& hazard pointer default domain () noexcept;

// For synchronous reclamation
vold hazard pointer clean up (
hazard pointer domainé& domain = hazard pointer default domain()) noexcept;

Hazard Pointers Proposal for C++26

template <typename T, typename D = default delete<T>>
class hazard pointer obj base ({
public:
vold retire (
D d=D(),
hazard pointer domain& domaln = hazard pointer default domain()) noexcept;
volid retire (hazard pointer domain& domain) noexcept;

b g

Hazard Pointers Proposal for C++26

class hazard pointer {
public:
hazard pointer () noexcept; // Empty
hazard pointer (hazard pointer&&) noexcept;
hazard pointeré& operator=(hazard pointeré&&) noexcept;
~hazard pointer () ;
[[nodiscard]] bool empty () const noexcept;
template <typename T> T* protect(const atomic<T*>& src) noexcept;
template <typename T> bool try protect (T*& ptr, const atomic<T*>& src) noexcept;
template <typename T> void reset protection(const T* ptr) noexcept;
vold reset protection(nullptr t = nullptr) noexcept;
volid swap (hazard pointeré&) noexcept;

b g

hazard pointer make hazard pointer (
hazard pointer domain& domaln = hazard pointer default domain());

void swap (hazard pointeré&, hazard pointeré&) noexcept;

Hazard Pointers Proposal for C++26

template <typename T, typename D = default delete<T>>
class hazard pointer ob]j base {
public:

void retire(D d = D()) noexcept;

i

class hazard pointer {
public:
hazard pointer() noexcept; // Empty
hazard pointer (hazard pointeré&é&) noexcept;
hazard pointer& operator=(hazard pointer&&) noexcept;
~hazard pointer () ;
[[nodiscard]] bool empty() const noexcept;
template <typename T> T* protect(const atomic<T*>& src) noexcept;
template <typename T> bool try protect(T*& ptr, const atomic<T*>& src)
noexcept;
template <typename T> void reset protection (const T* ptr) noexcept;
void reset protection (nullptr t = nullptr) noexcept;
void swap (hazard pointeré&) noexcept;

i

hazard pointer make hazard pointer();

void swap (hazard pointeré&, hazard pointeré&) noexcept;

Hazard Pointers Beyond C++26

Hazard pointer array optimization

In heavy use in Folly for ~4 years. Simple.

Synchronous reclamation

Folly cohort synchronous reclamation: In heavy use in Folly for 3+ years.
Global cleanup as in TS2?
Other variations?

CPPCON 2021: Hazard pointer synchronous reclamation beyond Concurrency TS2

Integrated link counting
In heavy use in Folly for ~4 years. Formal wording may not be simple.

Domains:

Custom domain allocators as in TS2?

WiredTiger Feedback: Separate checking protection from reclamation.

Folly experience: Robust default domain. No custom domains needed so far.

RCU in Concurrency TS 2

C++ RCU: A Learning Experience

My previous C++ project had been in 1990

My initial attempt at RCU bindings in C++ thus used “virtual”

This resulted in some pointed feedback

Again With Curiously Recurring Template Pattern

Diagnostic-driven development leads to this dubious code:

struct foo: std::rcu obj base<foo> {
int a;
}s

Actually, RCU will be in an experimental namespace rather than std: :, but | am being optimistic!

33

Again With Curiously Recurring Template Pattern

Diagnostic-driven development leads to this dubious code:

struct foo: std::rcu obj base<foo> {

s

But it compiles?

int a;

Again With Curiously Recurring Template Pattern

Diagnostic-driven development leads to this dubious code:

struct foo: std::rcu obj base<foo> {

s

But it compiles? And it works???

int a;

Again With Curiously Recurring Template Pattern

Diagnostic-driven development leads to this dubious code:

struct foo: std::rcu obj base<foo> {
int a;
}s

But it compiles? And it works???

The magic of CRTP!!!

Mutually Assured Education

My knowledge of C++ was and is limited
* Others’ knowledge of RCU was and is limited

* Therefore, lots of discussion and code samples
* https://github.com/paulmckrcu/RCUCPPbindings Test/paulmck
 Many thanks to my many teachers, especially those who taught in code:
e ArthurJ. O’'Dwyer, Daisy Hollman, and lzzy Muerte

* And lots of discussions afterwards
 Too many to fit on a slide, but see authors and contributors to many papers

A Little Bike-Shedding Along the Way

e

e —

Wikimedia Commons User SeppVei

A Little Bike-Shedding Along the Way

e template<T> replaced museum-piece abstract classes ;-)

synchronize rcu() torcu_synchronize() for consistency
RAIl: rcu reader to a Cppl7Basiclockable rcu domain

» Deleters may be invoked directly from a retire call
e Late-breaking news: May need to inform users of this (more on this later)

* Non-intrusive rcu_retire() (now in Linux kernel...)

RCU RAIl Readers

* As C++ developers might expect:

void an_rcu_reader()

{
do_something before_reader();
std::unique_lock<std::rcu_domain> rdru(std::rcu_default domain());
do_something within_reader();;

}

void wait_for rcu_readers()

{

rcu_synchronize();

}

As RCU users might expect:

BEING SIMULTANEOUSLY DEAD AND ALVE
iN THE B0X GAVE ME AN INCREDIBLE
PERSPECTIVE OVER THE "UfE, THE
UNIVERSE AND EVERYTHING". AND
| AM HERE TO TELL §T TO THE worLo) |

Author: ADA&Neagoe This file is licensed under the Creative Commons Attribution-ShareAlike license versions 3.0, 2.5, 2.0, and 1.0.

RCU RAIl Readers

* As C++ developers might expect, but more succinctly:

void an_rcu_reader()

{
do_something before_reader();
std::unique_lock<std::rcu_domain> rdru();
do_something within_reader();;

}

* Except that not all the world can live within the confines of an
RCU RAIl reader...

RCU Non-RAIll Readers

* And another fine example of diagnostic-driven development!
* Function to start an RCU reader:

std::unique_lock<std::rcu_domain> start _deferred reader()

{

std::unique_lock<std::rcu_domain> new_rdr(std::rcu_default _domain());
return std::move(new_rdr);

}

 Function to end an RCU reader:

void end_deferred_reader(std::unique_lock<std::rcu_domain> old rdr)

{
}

Invoking RCU Non-RAIl Readers

* Whenever the spirit std: :move()s you:

void an_rcu_reader()

{
do_something before_reader();
auto rdr = std::move(start _deferred reader()); // rcu_read lock();
do_something within_reader();
end_deferred_reader(std: :move(rdr)); // rcu_read unlock();
do_something after_reader();

}

* But why not just add a pair of curly braces???

Why RCU Non-RAIll Readers?

Why RCU Non-RAIll Readers?

 Use RCU to protect a search structure, and locking on objects

void update_object(int key)

{

auto rdr = std::move(start _deferred reader()); // rcu_read lock();
auto p& = find object(key);
if (needs_update(p)) {
std::lock _guard<std::mutex> guard(p.objmutex);
end_deferred_reader(std: :move(rdr)); // rcu_read unlock();
if (needs_update(p))
do_rcu_unsafe_locked update(p);

} else {

¥

end_deferred_reader(std: :move(rdr)); // rcu_read unlock();

Why RCU Non-RAIll Readers?

 Use RCU to protect a search structure, and locking on objects

void update_object(int key)

‘auto rdr = std::move(start_deferred_reader()); // rcu_read lock();
-auto p& = find object(key);

if (needs_update(p)) {

- std::lock _guard<std::mutex> guard(p.objmutex);

"= = E E ® ® E E ®E s _k 2 2 2 E 2 20 E ®E E,E &® "= = E ®E ®E ®E ® "= = = m = ®m m 8 T s ¢ s s ¢ 8 5 5 °8e" s 58 0 08 8 8 &

Why RCU Non-RAIll Readers?

 Use RCU to protect a search structure, and locking on objects

void update_object(int key)
‘auto rdr = std::move(start_deferred_reader()); // rcu_read lock();
-auto p& = find object(key);

if (needs_update(p)) {

What Future Learnings Might There Be?

* QEMU developers’ on deleters being invoked from rcu_retire():
 Don’t do that!!ll We hate the resulting deadlocks!!!

What rcu_retire() deadlocks???

* |f any lock is acquired by any deleter, that lock cannot be held
across any callto .retire() orrcu_retire()!

void hapless_retire_invoker(Foo *p)

{

std::lock guard<std::mutex> guard(mymutex);

rcu_retire(p);

// Which might invoke deleters.

// And if any of those deleters acquire mymutex, game over!!!

What Future Learnings Might There Be?

* QEMU developers’ on deleters being invoked from rcu_retire():
 Don’t do that!!ll We hate the resulting deadlocks!!!
 But some environments don’t have much choice

* Perhaps a static function? If it returns false, no such deadlocks!
bool rcu_deleters from retire(rcu_domain& dom = rcu_default domain()) noexcept;

What Future Learnings Might There Be?

* QEMU developers’ on deleters being invoked from rcu_retire():
 Don’t do that!!ll We hate the resulting deadlocks!!!
 But some environments don’t have much choice

* Perhaps a static function? If it returns false, no such deadlocks!
bool rcu_deleters from retire(rcu_domain& dom = rcu_default domain()) noexcept;

 Maybe rcu_retire()? Type trait saying beg/borrow/steal thread? ...

What Future Learnings Might There Be?

QEMU developers’ on deleters being invoked from rcu_retire():

 Don’t do that!!ll We hate the resulting deadlocks!!!
e But some environments don’t have much choice

* Perhaps a static function? If it returns false, no such deadlocks!
bool rcu_deleters from retire(rcu_domain& dom = rcu_default domain()) noexcept;

 Maybe rcu_retire()? Type trait saying beg/borrow/steal thread? ...
Additional unique lock/lock guard constructors for RCU?

Some users might want a rough count of outstanding deleters
Multiple instances of rcu_domain? Later...
And there is still memory order _consume...

What Future Learnings Might There Be?

* QEMU developers’ on deleters being invoked from rcu_retire():
 Don’t do that!!ll We hate the resulting deadlocks!!!
 But some environments don’t have much choice

* Perhaps a static function? If it returns false, no such deadlocks!
bool rcu_deleters from retire(rcu_domain& dom = rcu_default domain()) noexcept;

 Maybe rcu_retire()? Type trait saying beg/borrow/steal thread? ...
* Additional unique lock/lock guard constructors for RCU?
* Some users might want a rough count of outstanding deleters
* Multiple instances of rcu_domain? Later...
* And there is still memory order_consume...

* None of which are on critical path to IS

Final Words

The IRONY: it is not lost on us
SG1 Concurrency SG will have 2 concurrency TSes in the

github repository concurrently

Q ISO C++ Standards Committee

Overview [Repositories Packages People Teams Projects

) concurrenc% Type ~ Language ~ & New repository

2 results for repositories matching concurrency sorted by last updated 2 Clear filter

concurrency-ts2 Public
C++ Concurrency TS 2

TeX %0 w0 (o 190 Updated 17 hours ago

concurrency-ts ' Public

The draft C++ Library Concurrency Technical Specification

@HTML % 16 Y65 @ 2 $%1 Updated on Nov 3, 2015

What is in Concurrency TS2?

« Several synchronization primitives for locked-free programming on concurrent data

structures. These are cell, hazard ptr and RCU. These extend the existing shared_ptr
and the proposed atomic_shared_ptr which all have safe reclamation facilities. As such
we also propose moving shared_ptr and atomic<shared<ptr>> to this new location. We
suspect this part may be controversial, so would ask for discussion on this topic.

* P1121R3. Hazard Pointers: Proposed Interface
and Wording for Concurrency TS 2.

* P1122R4 - Proposed Wording for Concurrent
Data Structures: Read-Copy-Update (RCU)

BACKUP

